$\begin{array}{c} {\bf Assignments} \\ {\bf Continuum\ Mechanics} \\ {\bf MME-203} \end{array}$ **Note:** You must turn in the assignments separately before the end of the sessionals. Use notational conventions adopted in Bechtel for your derivations. Late submission will not be accepted. **Assignment 1** Following the outline in Bechtel, show that the set L of all second order tensors is a vector space and specifically a nine-dimensional vector space. [10] Assignment 2 For the cylindrical polar coordinate system $(\theta^1 = r, \theta^2 = \theta, \theta^3 = z)$. (a) Determine the covariant basis $\mathbf{g}_i = \mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3$ (b) Determine the contravariant basis $\mathbf{g}^i = \mathbf{g}^1, \mathbf{g}^2, \mathbf{g}^3$ (c) Determine the relation between the physical components v_r , v_θ , v_z , the covariant components v_1 , v_2 , v_3 , and the contravariant components v_1 , v_2 , v_3 , of a vector \mathbf{v} . (d) Determine $\operatorname{grad}(\mathbf{v})$. (e) Determine $\operatorname{div}(\mathbf{v})$. [25] **Assignment 3** For the cylindrical polar coordinate system $(\theta^1 = r, \theta^2 = \theta, \theta^3 = z)$. (a) Determine the relation between the physical components and the contravariant components of a tensor **T**. (b) Determine the Christoffel symbols Γ^i_{ik} . (c) Determine div(**T**). [15]